Лекция 11. Механизмы внимания
Небольшое историческое отступление: исследование внимания - это огромная область с долгой историей когнитивной нейробиологии. Фокусировка, концентрация сознания являются сущностью внимания, которые позволяют человеку расставить приоритеты в восприятии, чтобы эффективно взаимодействовать с другими.
В результате мы не обрабатываем всю информацию, имеющуюся во входных сенсорных данных. В любой момент нам известна лишь небольшая часть информации в окружающей среде. В когнитивной нейробиологии существует несколько типов внимания, таких как избирательное внимание, скрытое внимание и пространственное внимание. Теория зажигает искру в недавнем глубоком обучении - это теория интеграции функций избирательного внимания, которая была разработана Энн Трейсман и Гарри Гелад в статье (Treisman & Gelade, 1980) в 1980 году. В этой статье заявляется, что при восприятии стимула, функции регистрируются заранее, автоматически и параллельно, а объекты идентифицируются отдельно и на более позднем этапе обработки. Теория была одной из самых влиятельных психологических моделей человеческого визуального внимания.
Однако мы не будем слишком увлекаться теорией внимания в нейробиологии, а сосредоточимся на применении идеи внимания в глубоком обучении, где внимание можно рассматривать как обобщенное объединение методов с выравниванием смещения по входам. В этой главе мы дадим вам некоторое представление о том, как преобразовать идею внимания в конкретные математические модели и заставить их работать.
11.1. Механизмы внимания
В Разделе 9.7 мы кодируем входную информацию исходной последовательности в рекуррентном единичном состоянии, а затем передаем ее декодеру для генерации целевой последовательности. Токен в целевой последовательности может быть тесно связан с одним или несколькими токенами в исходной последовательности, а не со всей исходной последовательностью.
Например, при переводе «Hello world» в «Bonjour le monde.», «Bonjour» отображается в «Hello», а «monde» - в «world». В модели seq2seq декодер может неявно выбирать соответствующую информацию из состояния, передаваемого кодером. Однако механизм внимания делает этот выбор явным.
Внимание - это обобщенный метод объединения с выравниванием смещения по входам. Ключевым компонентом в механизме внимания является уровень внимания, или для простоты он называется вниманием. Входной слой внимания называется запросом. Для запроса внимание возвращает результат, основанный на памяти - набор пар ключ-значение, закодированных на уровне внимания. Чтобы быть более конкретным, предположим, что память содержит n пар ключ-значение, (k1, v1),. . . , (kn, vn), где ki ∈ Rdk, vi ∈ Rdv. По запросу q ∈ Rdq уровень внимания возвращает вывод o ∈ Rdv той же формы, что и значение.
Рис. 11.1.1: Слой внимания возвращает вывод, основанный на входном запросе и его памяти.
Полный процесс механизма внимания представлен на рис. 11.1.2. Чтобы вычислить результат внимания, мы сначала используем функцию оценки α, которая измеряет сходство между запросом и ключом. Итак, для каждого ключа k1,. . . , kn, вычисляем баллы a1,. . . , an
	ai = α (q, ki).                                                                                  (11.1.1)
Затем мы используем softmax для получения весов внимания, т.е.
	b = softmax (a), 
где 
	bi = exp (ai) / ∑jехр (aj), b = [b1,. . . , bn]Т.                                   (11.1.2)
Наконец, на выходе получается взвешенная сумма значений:
	o = ∑ni = 1 bivi.                                                                               (11.1.3)
Рис. 11.1.2: Результат внимания - это взвешенная сумма значений.
Различный выбор функции оценки приводит к разным уровням внимания. Ниже мы представляем два обычно используемых уровня внимания. Прежде чем погрузиться в реализацию, мы сначала выражаем два оператора, которые помогут вам начать работу: замаскированная версия оператора softmax masked_softmax и специализированный оператор точки batch_dot.
import math
from d2l import mxnet as d2l
from mxnet import np, npx
from mxnet.gluon import nn
npx.set_np()

Маскированный softmax принимает 3-мерный вход и позволяет нам отфильтровать некоторые элементы, указав допустимую длину для последнего измерения. (См. Определение допустимой длины в Разделе 9.5.) В результате любое значение вне допустимой длины будет замаскировано как 0. Давайте реализуем функцию masked_softmax.
#@save
def masked_softmax(X, valid_len):
"""Perform softmax by filtering out some elements."""
# X: 3-D tensor, valid_len: 1-D or 2-D tensor
if valid_len is None:
	return npx.softmax(X)
else:
	shape = X.shape
if valid_len.ndim == 1:
	valid_len = valid_len.repeat(shape[1], axis=0)
else:
	valid_len = valid_len.reshape(-1)
# Fill masked elements with a large negative, whose exp is 0
X = npx.sequence_mask(X.reshape(-1, shape[-1]), valid_len, True,
axis=1, value=-1e6)
return npx.softmax(X).reshape(shape)

Чтобы проиллюстрировать, как работает эта функция, мы построим две матрицы 2 × 4 в качестве входных данных. Кроме того, мы указываем, что допустимая длина равна 2 для первого примера и 3 для второго. Затем, как мы видим из следующих выходных данных, значения за пределами допустимой длины маскируются как нулевые.
masked as zero.
masked_softmax(np.random.uniform(size=(2, 2, 4)), np.array([2, 3]))
array([[[0.488994 , 0.511006 , 0. , 0. ],
[0.43654838, 0.56345165, 0. , 0. ]],
[[0.28817102, 0.3519408 , 0.3598882 , 0. ],
[0.29034293, 0.25239873, 0.45725834, 0. ]]])

Более того, второй оператор batch_dot принимает два входа X и Y с фигурами (b, n, m) и (b, m, k), соответственно, и возвращает результат с формой (b, n, k). Чтобы быть конкретным, он вычисляет b как скалярные произведения для i = {1,. . . , b}, т.е.
dot products for i = {1, . . . , b}, i.e.,
Z[i, :, :] = X[i, :, :]Y [i, :, :]. (10.1.4)
npx.batch_dot(np.ones((2, 1, 3)), np.ones((2, 3, 2)))
array([[[3., 3.]],
[[3., 3.]]])

11.1.1. Внимание к скалярному продукту
Оснащенный двумя указанными выше операторами: masked_softmax и batch_dot, давайте углубимся в детали двух широко используемых уровней внимания. Первый - это внимание к скалярному произведению: он предполагает, что запрос имеет ту же размерность, что и ключи, а именно q, ki ∈ Rd для всех i. При скалярном произведении внимания оценки вычисляются как скалярное произведение между запросом и ключом, которое затем делится на √d, чтобы свести к минимуму несвязанное влияние параметра d на оценки. Другими словами,
	α (q, k) = ⟨q, k⟩ / √d.                                                                      (11.1.5)
Помимо одномерных запросов и ключей, мы всегда можем обобщить их на многомерные запросы и ключи. Предположим, что Q ∈ Rm × d содержит m запросов и K ∈ Rn × d имеет все n ключей. Мы можем вычислить все mn оценок по
	α (Q, K) = QK⊤ / √d.                                                                    (11.1.6)
С помощью (11.1.6) мы можем реализовать уровень внимания скалярного продукта DotProductAttention, который поддерживает пакет запросов и пары ключ-значение. Кроме того, для регуляризации мы также используем слой исключения.
#@save
class DotProductAttention(nn.Block):
def __init__(self, dropout, **kwargs):
super(DotProductAttention, self).__init__(**kwargs)
self.dropout = nn.Dropout(dropout)
# `query`: (`batch_size`, #queries, `d`)
# `key`: (`batch_size`, #kv_pairs, `d`)
# `value`: (`batch_size`, #kv_pairs, `dim_v`)
# `valid_len`: either (`batch_size`, ) or (`batch_size`, xx)
def forward(self, query, key, value, valid_len=None):
d = query.shape[-1]
# Установите transpose_b = True, чтобы поменять местами последние два измерения ключа
scores = npx.batch_dot(query, key, transpose_b=True) / math.sqrt(d)
attention_weights = self.dropout(masked_softmax(scores, valid_len))
return npx.batch_dot(attention_weights, value)

Давайте протестируем класс DotProductAttention на игрушечном примере. Сначала создайте два пакета, каждый из которых содержит один запрос и 10 пар "ключ-значение". С помощью аргумента valid_len мы указываем, что будем проверять первые 2 пары ключ-значение для первого пакета и 6 для второго. Следовательно, даже если оба пакета имеют одинаковые пары запроса и значения ключа, мы получаем разные результаты.
atten = DotProductAttention(dropout=0.5)
atten.initialize()
keys = np.ones((2, 10, 2))
values = np.arange(40).reshape(1, 10, 4).repeat(2, axis=0)
atten(np.ones((2, 1, 2)), keys, values, np.array([2, 6]))
array([[[ 2. , 3. , 4. , 5. ]],
[[10. , 11. , 12.000001, 13. ]]])

Как мы видим выше, внимание к точечному произведению просто умножает запрос и ключ вместе, и надеется извлечь из этого их сходство. Принимая во внимание, что запрос и ключ могут быть разных размеров. Чтобы решить эту проблему, мы можем обратиться к MLP.
11.1.2. Внимание MLP
Во внимании MLP мы проецируем и запрос, и ключи в Rh с помощью обучаемых параметров весов. Предположим, что обучаемые веса - это Wk ∈ Rh × dk, Wq ∈ Rh × dq, и v ∈ Rh. Тогда функция оценки определяется как
	α (k, q) = v⊤tanh (Wkk + Wqq).                                                       (11.1.7)
Интуитивно вы можете представить, что Wkk + Wqq объединяет ключ и значение в измерении объекта и передает их одному персептрону скрытого слоя с размером скрытого слоя h и размером выходного слоя 1. В этом скрытом слое функция активации - tanh, а не применяется предвзятость. Теперь займемся реализацией MLP внимания.
#@save
class MLPAttention(nn.Block):
def __init__(self, units, dropout, **kwargs):
super(MLPAttention, self).__init__(**kwargs)
# Use flatten=False to keep query's and key's 3-D shapes
self.W_k = nn.Dense(units, use_bias=False, flatten=False)
self.W_q = nn.Dense(units, use_bias=False, flatten=False)
self.v = nn.Dense(1, use_bias=False, flatten=False)
self.dropout = nn.Dropout(dropout)
def forward(self, query, key, value, valid_len):
query, key = self.W_q(query), self.W_k(key)
# Expand query to (`batch_size`, #queries, 1, units), and key to
# (`batch_size`, 1, #kv_pairs, units). Then plus them with broadcast
features = np.expand_dims(query, axis=2) + np.expand_dims(key, 
axis=1)
features = np.tanh(features)
scores = np.squeeze(self.v(features), axis=-1)
attention_weights = self.dropout(masked_softmax(scores, valid_len))
return npx.batch_dot(attention_weights, value)

Чтобы проверить приведенный выше класс MLPAttention, мы используем те же входные данные, что и в предыдущем игрушечном примере. Как мы видим ниже, несмотря на то, что MLPAttention содержит дополнительную модель MLP, мы получаем те же результаты, что и для DotProductAttention.
atten = MLPAttention(units=8, dropout=0.1)
atten.initialize()
atten(np.ones((2, 1, 2)), keys, values, np.array([2, 6]))
array([[[ 2. , 3. , 4. , 5. ]],
[[10. , 11. , 12.000001, 13. ]]])

Резюме
• Слой внимания явно выбирает связанную информацию.
• Память уровня внимания состоит из пар ключ-значение, поэтому его выходные данные близки к значениям, ключи которых аналогичны запросам.
• Две обычно используемые модели внимания - это точечное произведение и внимание MLP.
Упражнения
1. Каковы преимущества и недостатки внимания скалярного продукта и внимания MLP соответственно?
Обсуждения (см. https://discuss.d2l.ai/t/346)
11.2. От последовательности к последовательности с механизмами внимания
В этом разделе мы добавляем механизм внимания к модели от последовательности к последовательности (seq2seq), как это было представлено в разделе 9.7, для явного агрегирования состояний с весами. На рис. 10.2.1 представлена ​​модель архитектуры для кодирования и декодирования в кратчайшие сроки t. Здесь память уровня внимания состоит из всей информации, которую видел кодировщик, - выходных данных кодировщика на каждом временном шаге.
Во время декодирования в качестве запроса используется вывод декодера из предыдущего временного шага t - 1.
Выход модели внимания рассматривается как контекстная информация, и такой контекст объединяется с входом декодера Dt. Наконец, мы передаем конкатенацию в декодер.
Рис. 11.2.1: Второй временной шаг в декодировании от последовательности к модели последовательности с механизмом внимания.
Чтобы проиллюстрировать общую архитектуру seq2seq с моделью внимания, на рисунке 11.2.2 показана структура уровней его кодера и декодера.
Рис. 11.2.2: Уровни от последовательности к модели последовательности с механизмом внимания.
from d2l import mxnet as d2l
from mxnet import np, npx
from mxnet.gluon import rnn, nn
npx.set_np()

11.2.1. Декодер
Поскольку кодировщик seq2seq с механизмами внимания такой же, как Seq2SeqEncoder в Разделе 9.7, мы просто сосредоточимся на декодере. Мы добавляем уровень внимания MLP (MLPAttention), который имеет тот же скрытый размер, что и уровень LSTM в декодере. Затем мы инициализируем состояние декодера, передавая три элемента из кодировщика:
· выходы кодировщика всех временных шагов: они используются как память слоя внимания с идентичными ключами и значениями;
· скрытое состояние последнего временного шага кодера: оно используется как начальное скрытое состояние декодера;
· допустимая длина кодировщика: поэтому уровень внимания не будет рассматривать маркеры заполнения в выходных данных кодировщика.
На каждом временном шаге декодирования мы используем скрытое состояние последнего уровня RNN декодера в качестве запроса для уровня внимания. Выходные данные модели внимания затем объединяются с входным вектором встраивания для подачи на уровень RNN. Хотя скрытое состояние уровня RNN также содержит историческую информацию от декодера, вывод внимания явно выбирает выходы кодера на основе на enc_valid_len, так что вывод внимания приостанавливает прочую несущественную информацию.
Давайте реализуем Seq2SeqAttentionDecoder и посмотрим, чем он отличается от декодера в seq2seq из Раздела 9.7.2.
class Seq2SeqAttentionDecoder(d2l.Decoder):
def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
dropout=0, **kwargs):
super(Seq2SeqAttentionDecoder, self).__init__(**kwargs)
self.attention_cell = d2l.MLPAttention(num_hiddens, dropout)
self.embedding = nn.Embedding(vocab_size, embed_size)
self.rnn = rnn.LSTM(num_hiddens, num_layers, dropout=dropout)
self.dense = nn.Dense(vocab_size, flatten=False)
def init_state(self, enc_outputs, enc_valid_len, *args):
outputs, hidden_state = enc_outputs
# Transpose `outputs` to (`batch_size`, `seq_len`, `num_hiddens`)
return (outputs.swapaxes(0, 1), hidden_state, enc_valid_len)
def forward(self, X, state):
enc_outputs, hidden_state, enc_valid_len = state
X = self.embedding(X).swapaxes(0, 1)
outputs = []
for x in X:
# `query` shape: (`batch_size`, 1, `num_hiddens`)
query = np.expand_dims(hidden_state[0][-1], axis=1)
# `context` has same shape as `query`
context = self.attention_cell(
query, enc_outputs, enc_outputs, enc_valid_len)
# Concatenate on the feature dimension
x = np.concatenate((context, np.expand_dims(x, axis=1)), axis=-1)
# Reshape `x` to (1, `batch_size`, `embed_size` + `num_hiddens`)
out, hidden_state = self.rnn(x.swapaxes(0, 1), hidden_state)
outputs.append(out)
outputs = self.dense(np.concatenate(outputs, axis=0))
return outputs.swapaxes(0, 1), [enc_outputs, hidden_state,
enc_valid_len]

Теперь мы можем протестировать seq2seq с моделью внимания. Чтобы соответствовать модели без внимания в Разделе 9.7, мы используем одни и те же гиперпараметры для vocab_size, embed_size, num_hiddens и num_layers. В результате мы получаем ту же форму вывода декодера, но при этом будет изменена структура состояний.
encoder = d2l.Seq2SeqEncoder(vocab_size=10, embed_size=8,
num_hiddens=16, num_layers=2)
encoder.initialize()
decoder = Seq2SeqAttentionDecoder(vocab_size=10, embed_size=8,
num_hiddens=16, num_layers=2)
decoder.initialize()
X = np.zeros((4, 7))
state = decoder.init_state(encoder(X), None)
out, state = decoder(X, state)
out.shape, len(state), state[0].shape, len(state[1]), state[1][0].shape
((4, 7, 10), 3, (4, 7, 16), 2, (2, 4, 16))

11.2.2. Обучение
Как и в разделе 9.7.4, мы пробуем игрушечную модель, применяя те же гиперпараметры обучения и те же потери при обучении. Как видно из результата, поскольку последовательности в наборе обучающих данных относительно короткие, дополнительный уровень внимания не приводит к значительному улучшению. Из-за вычислительных накладных расходов уровней внимания кодера и декодера эта модель намного медленнее, чем модель seq2seq без внимания.
embed_size, num_hiddens, num_layers, dropout = 32, 32, 2, 0.0
batch_size, num_steps = 64, 10
lr, num_epochs, device = 0.005, 200, d2l.try_gpu()
src_vocab, tgt_vocab, train_iter = d2l.load_data_nmt(batch_size, num_steps)
encoder = d2l.Seq2SeqEncoder(
len(src_vocab), embed_size, num_hiddens, num_layers, dropout)
decoder = Seq2SeqAttentionDecoder(
len(tgt_vocab), embed_size, num_hiddens, num_layers, dropout)
model = d2l.EncoderDecoder(encoder, decoder)
d2l.train_s2s_ch9(model, train_iter, lr, num_epochs, device)
loss 0.032, 2515.2 tokens/sec on gpu(0)
Наконец, мы предсказываем несколько примеров.
для предложения в ['Go.', 'Wow!', «I'm OK.», 'I won!']:
print(sentence + ' => ' + d2l.predict_s2s_ch9(
model, sentence, src_vocab, tgt_vocab, num_steps, device))

Идти . => ва!
Вот это да ! =>!
Я в порядке . => je vais bien.
Я выиграл ! => je l'ai emporté!
Резюме
• Модель seq2seq с вниманием добавляет дополнительный уровень внимания к модели без внимания.
• Декодер модели seq2seq с вниманием передает три элемента от кодировщика: выходные данные кодера для всех временных шагов, скрытое состояние последнего временного шага кодировщика и допустимая длина кодировщика.
Упражнения
1. Сравните Seq2SeqAttentionDecoder и Seq2seqDecoder, используя одинаковые параметры и проверив их потери.
2. Можете ли вы придумать какие-либо варианты использования, в которых Seq2SeqAttentionDecoder будет лучше Seq2seqDecoder?
Обсуждения (см. https://discuss.d2l.ai/t/347)
11.3. Трансформер
В предыдущих главах мы рассмотрели основные архитектуры нейронных сетей, такие как сверточные нейронные сети (CNN) и рекуррентные нейронные сети (RNN). Подведем итоги их плюсов и минусов:
• CNN легко распараллеливать на уровне, но они не могут хорошо улавливать последовательную зависимость переменной длины.
• RNN могут захватывать последовательную информацию с большим радиусом действия и переменной длины, но страдают от неспособности распараллелить последовательность.
Чтобы объединить преимущества как CNN, так и RNN, (Vaswani et al., 2017) разработали новую архитектуру с использованием механизма внимания. Эта архитектура, которая называется Transformer, достигает распараллеливания путем захвата повторяющейся последовательности с вниманием и в то же время кодирует позицию каждого элемента в последовательности. В результате Transformer приводит к совместимой модели со значительно более коротким временем обучения.
Подобно модели seq2seq в Разделе 9.7, Transformer также основан на архитектуре кодировщика-декодера. Однако Transformer отличается от предыдущего тем, что заменяет повторяющиеся слои в seq2seq слоями внимания с несколькими головами, включает информацию о положении посредством кодирования положения и применяет нормализацию уровня. Мы сравниваем Transformer и seq2seq бок о бок на рис. 11.3.1.
В целом эти две модели похожи друг на друга: вложения исходной последовательности подаются в n повторяющихся блоков. Затем выходы последнего блока используются в качестве памяти внимания для декодера. Вложения целевой последовательности аналогичным образом передаются в n повторяющихся блоков в декодере, а конечные выходные данные получаются путем применения плотного слоя с размером словаря к выходным данным последнего блока.
Рис. 11.3.1: Архитектура трансформатора.
С другой стороны, Transformer отличается от модели seq2seq с вниманием в следующем:
1. Блок трансформера: повторяющийся слой в seq2seq заменяется блоком трансформера. Этот блок содержит слой внимания с несколькими головами и сеть прямой связи с позициями с двумя уровнями для кодировщика. Для декодера используется еще один уровень внимания с несколькими головами, который принимает состояние кодера.
2. Сложение и нормализация: входные и выходные данные как слоя внимания с несколькими головами, так и сети позиционной прямой связи обрабатываются двумя слоями «добавить и норма», которые содержат остаточную структуру и слой нормализации слоя.
3. Кодирование позиции: поскольку уровень самовнимания не различает порядок элементов в последовательности, уровень позиционного кодирования используется для добавления последовательной информации в каждый элемент последовательности.
В оставшейся части этого раздела мы снабдим вас каждым новым компонентом, представленным Transformer, и подготовим вас к созданию модели машинного перевода.
from d2l import mxnet as d2l
import math
from mxnet import autograd, np, npx
from mxnet.gluon import nn
npx.set_np()

11.3.1. Многоголовое внимание
Прежде чем приступить к обсуждению уровня внимания с несколькими головами, давайте кратко рассмотрим архитектуру внимания к себе. Модель самовнимания - это нормальная модель внимания, в которой ее запрос, ключ и значение копируются точно так же из каждого элемента последовательных входных данных. Как показано на рис. 11.3.2, самовнимание выводит последовательные выходные данные одинаковой длины для каждого элемента ввода. По сравнению с повторяющимся слоем выходные элементы слоя самовнимания могут вычисляться параллельно, и, следовательно, легко получить высокоэффективную реализацию.
Рис. 11.3.2: Архитектура самовнимания.
Слой внимания с несколькими головами состоит из h параллельных слоев самовнимания, каждый из которых называется головой.
Для каждой головы перед подачей на уровень внимания мы проецируем запросы, ключи и значения с тремя плотными слоями со скрытыми размерами pq, pk и pv, соответственно. Выходные данные этих h головок внимания объединяются и затем обрабатываются последним плотным слоем.
Предположим, что измерения для запроса, ключа и значения равны dq, dk и dv, соответственно. Тогда для каждой головки i = 1,. . . , h можно обучить обучаемые параметры W(i)q ∈ Rpq × dq, W(i)k ∈ Rpk × dk и W(i)v ∈ Rpv × dv. Следовательно, выход для каждой головы
	о(i) = attention (W(i)q q, W(i)k k, W(i)v v),                                            (11.3.1)
где внимание может быть любым уровнем внимания, например, DotProductAttention и MLPAttention, как мы представили в Разделе 11.1.
После этого выходные данные длиной pv от каждой из h головок внимания объединяются в выходные данные длины hpv, которые затем передаются на последний плотный слой со скрытыми блоками do. Веса этого плотного слоя можно обозначить как Wo ∈ Rdo × hpv. В результате вывод внимания с несколькими головами будет
	o = Wo [о(1)... о(h) ].                                                                             (11.3.2)
Теперь мы можем реализовать многоголовое внимание. Предположим, что внимание с несколькими головками содержит число головок num_heads = h, скрытый размер num_hiddens = pq = pk = pv одинаков для слоев запроса, ключа и значения. Кроме того, поскольку внимание с несколькими головами сохраняет ту же размерность между входом и выходом, у нас также есть размер выходного объекта do = num_hiddens.
#@save
class MultiHeadAttention(nn.Block):
def __init__(self, num_hiddens, num_heads, dropout, use_bias=False, **kwargs):
super(MultiHeadAttention, self).__init__(**kwargs)
self.num_heads = num_heads
self.attention = d2l.DotProductAttention(dropout)
self.W_q = nn.Dense(num_hiddens, use_bias=use_bias, flatten=False)
self.W_k = nn.Dense(num_hiddens, use_bias=use_bias, flatten=False)
self.W_v = nn.Dense(num_hiddens, use_bias=use_bias, flatten=False)
self.W_o = nn.Dense(num_hiddens, use_bias=use_bias, flatten=False)
def forward(self, query, key, value, valid_len):
# For self-attention, `query`, `key`, and `value` shape:
# (`batch_size`, `seq_len`, `dim`), where `seq_len` is the length of
# input sequence. `valid_len` shape is either (`batch_size`, ) or
# (`batch_size`, `seq_len`).
# Project and transpose `query`, `key`, and `value` from
# (`batch_size`, `seq_len`, `num_hiddens`) to
# (`batch_size` * `num_heads`, `seq_len`, `num_hiddens` / `num_heads`)
query = transpose_qkv(self.W_q(query), self.num_heads)
key = transpose_qkv(self.W_k(key), self.num_heads)
value = transpose_qkv(self.W_v(value), self.num_heads)
if valid_len is not None:
# Copy `valid_len` by `num_heads` times
if valid_len.ndim == 1:
valid_len = np.tile(valid_len, self.num_heads)
else:
valid_len = np.tile(valid_len, (self.num_heads, 1))
# For self-attention, `output` shape:
# (`batch_size` * `num_heads`, `seq_len`, `num_hiddens` / `num_heads`)
output = self.attention(query, key, value, valid_len)
# `output_concat` shape: (`batch_size`, `seq_len`, `num_hiddens`)
output_concat = transpose_output(output, self.num_heads)
return self.W_o(output_concat)

Вот определения функций транспонирования transpose_qkv и transpose_output, которые являются обратными друг другу.
#@save
def transpose_qkv(X, num_heads):
# Input `X` shape: (`batch_size`, `seq_len`, `num_hiddens`).
# Output `X` shape:
# (`batch_size`, `seq_len`, `num_heads`, `num_hiddens` / `num_heads`)
X = X.reshape(X.shape[0], X.shape[1], num_heads, -1)
# `X` shape:
# (`batch_size`, `num_heads`, `seq_len`, `num_hiddens` / `num_heads`)
X = X.transpose(0, 2, 1, 3)
# `output` shape:
# (`batch_size` * `num_heads`, `seq_len`, `num_hiddens` / `num_heads`)
output = X.reshape(-1, X.shape[2], X.shape[3])
return output
#@save
def transpose_output(X, num_heads):
# A reversed version of `transpose_qkv`
X = X.reshape(-1, num_heads, X.shape[1], X.shape[2])
X = X.transpose(0, 2, 1, 3)
return X.reshape(X.shape[0], X.shape[1], -1)

Давайте протестируем модель MultiHeadAttention на игрушечном примере. Создайте внимание с несколькими головами со скрытым размером do = 100, на выходе будет тот же размер пакета и длина последовательности, что и на входе, но последнее измерение будет равно num_hiddens = 100.
cell = MultiHeadAttention(90, 9, 0.5)
cell.initialize()
X = np.ones((2, 4, 5))
valid_len = np.array([2, 3])
cell(X, X, X, valid_len).shape
(2, 4, 90)

11.3.2. Позиционные сети с прямой связью
Другой ключевой компонент в блоке Transformer называется позиционно-упреждающей сетью (FFN). Он принимает трехмерный ввод с формой (размер пакета, длина последовательности, размер элемента). Позиционная FFN состоит из двух плотных слоев, относящихся к последнему измерению. Поскольку одни и те же два плотных слоя используются для каждого элемента позиции в последовательности, мы назвали это позиционным.
Действительно, это эквивалентно применению двух сверточных слоев 1 × 1.
Ниже PositionWiseFFN показывает, как реализовать позиционную FFN с двумя плотными слоями скрытого размера ffn_num_hiddens и pw_num_outputs, соответственно.
#@save
class PositionWiseFFN(nn.Block):
def __init__(self, ffn_num_hiddens, pw_num_outputs, **kwargs):
super(PositionWiseFFN, self).__init__(**kwargs)
self.dense1 = nn.Dense(ffn_num_hiddens, flatten=False,
activation='relu')
self.dense2 = nn.Dense(pw_num_outputs, flatten=False)
def forward(self, X):
return self.dense2(self.dense1(X))

Подобно многоголовому вниманию, сеть прямой связи по положению изменяет только последний размер входных данных - размер объекта. Кроме того, если два элемента во входной последовательности идентичны, соответствующие выходы также будут идентичными.
ffn = PositionWiseFFN(4, 8)
ffn.initialize()
ffn(np.ones((2, 3, 4)))[0]
array([[ 9.15348239e-04, -7.27669394e-04, 1.14063594e-04,
-8.76279722e-04, -1.02867256e-03, 8.02748313e-04,
-4.53725770e-05, 2.15598906e-04],
[ 9.15348239e-04, -7.27669394e-04, 1.14063594e-04,
-8.76279722e-04, -1.02867256e-03, 8.02748313e-04,
-4.53725770e-05, 2.15598906e-04],
[ 9.15348239e-04, -7.27669394e-04, 1.14063594e-04,
-8.76279722e-04, -1.02867256e-03, 8.02748313e-04,
-4.53725770e-05, 2.15598906e-04]])

11.3.3. Сложение и норма
Помимо двух вышеупомянутых компонентов в блоке Transformer, «добавление и норма» внутри блока также играет ключевую роль для плавного соединения входов и выходов других слоев. Чтобы объяснить, мы добавляем слой, который содержит остаточную структуру и нормализацию уровня после уровня внимания с несколькими головами и позиционной сети FFN. Нормализация уровня аналогична пакетной нормализации в разделе 7.5. Одно отличие состоит в том, что среднее значение и дисперсии для нормализации слоя вычисляются по последнему измерению, например, X.mean (axis = -1) вместо первого измерения пакета, например X.mean (axis = 0). Нормализация слоев предотвращает слишком сильное изменение диапазона значений в слоях, что обеспечивает более быстрое обучение и лучшую способность к обобщению.
MXNet имеет как LayerNorm, так и BatchNorm, реализованные в блоке nn. Позвольте нам вызвать их обоих и увидеть разницу в примере ниже.
layer = nn.LayerNorm()
layer.initialize()
batch = nn.BatchNorm()
batch.initialize()
X = np.array([[1, 2], [2, 3]])
# Compute mean and variance from `X` in the training mode
with autograd.record():
print('layer norm:', layer(X), '\nbatch norm:', batch(X))
layer norm: [[-0.99998 0.99998]
[-0.99998 0.99998]]
batch norm: [[-0.99998 -0.99998]
[ 0.99998 0.99998]]

Теперь давайте вместе реализуем блок подключения AddNorm. AddNorm принимает два входа X и Y. Мы можем рассматривать X как исходный вход в остаточной сети, а Y как выходы либо из слоя внимания с несколькими головами, либо из позиционной сети FFN. Кроме того, мы применяем выпадение по Y для регуляризации.
#@save
class AddNorm(nn.Block):
def __init__(self, dropout, **kwargs):
super(AddNorm, self).__init__(**kwargs)
self.dropout = nn.Dropout(dropout)
self.ln = nn.LayerNorm()
def forward(self, X, Y):
return self.ln(self.dropout(Y) + X)

Из-за остаточного соединения X и Y должны иметь одинаковую форму.
add_norm = AddNorm(0.5)
add_norm.initialize()
add_norm(np.ones((2, 3, 4)), np.ones((2, 3, 4))).shape
(2, 3, 4)

11.3.4. Позиционное кодирование
В отличие от рекуррентного слоя, как уровень внимания с несколькими головами, так и сеть прямой связи по положению вычисляют выход каждого элемента в последовательности независимо. Эта функция позволяет нам распараллеливать вычисления, но не позволяет моделировать последовательную информацию для данной последовательности. Чтобы лучше фиксировать последовательную информацию, модель Transformer использует позиционное кодирование для сохранения позиционной информации входной последовательности.
Для объяснения предположим, что X ∈ Rl × d - это вложение примера, где l - длина последовательности, а d - размер вложения. Этот уровень позиционного кодирования кодирует X-позицию P ∈ Rl × d и выводит P + X.
Позиция P представляет собой двумерную матрицу, где i относится к порядку в предложении, а j относится к позиции вдоль измерения вектора внедрения. Таким образом, каждое значение в исходной последовательности поддерживается с помощью следующих уравнений:
	Pi, 2j = sin (i / 100002j / d),                                                              (11.3.3)
	Pi, 2j + 1 = cos (i / 100002j / d),                                                          (11.3.4)
для i = 0,. . . , l - 1 и j = 0,. . . , (d - 1) / 2.
Рис. 11.3.4 иллюстрирует позиционное кодирование.
Рис. 11.3.4: Позиционное кодирование.
#@save
class PositionalEncoding(nn.Block):
def __init__(self, num_hiddens, dropout, max_len=1000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(dropout)
# Create a long enough `P`
self.P = np.zeros((1, max_len, num_hiddens))
X = np.arange(0, max_len).reshape(-1, 1) / np.power(
10000, np.arange(0, num_hiddens, 2) / num_hiddens)
self.P[:, :, 0::2] = np.sin(X)
self.P[:, :, 1::2] = np.cos(X)
def forward(self, X):
X = X + self.P[:, :X.shape[1], :].as_in_ctx(X.ctx)
return self.dropout(X)

Теперь мы тестируем класс PositionalEncoding с игрушечной моделью для четырех измерений. Как мы видим, 4-е измерение имеет ту же частоту, что и 5-е, но с другим смещением (то есть фазой), потому что одно создается функцией синуса, а другое - функцией косинуса. 6-е и 7-е измерения имеют более низкую частоту.
pe = PositionalEncoding(20, 0)
pe.initialize()
Y = pe(np.zeros((1, 100, 20)))
d2l.plot(np.arange(100), Y[0, :, 4:8].T, figsize=(6, 2.5),
legend=["dim %d" % p for p in [4, 5, 6, 7]])

11.3.5. Энкодер
Вооружившись всеми основными компонентами Transformer, давайте сначала создадим блок кодировщика Transformer. Этот кодировщик содержит слой внимания с несколькими головками, сеть с прямой связью по положению и два блока подключения «добавить и нормализовать». Как показано в коде, как для модели внимания, так и для позиционной модели FFN в EncoderBlock их выходное измерение равно num_hiddens. Это связано с природой остаточного блока, так как нам нужно добавить эти выходные данные обратно к исходному значению во время «сложения и нормализации».
#@save
class EncoderBlock(nn.Block):
def __init__(self, num_hiddens, ffn_num_hiddens, num_heads, dropout,
use_bias=False, **kwargs):
super(EncoderBlock, self).__init__(**kwargs)
self.attention = MultiHeadAttention(num_hiddens, num_heads, dropout,
use_bias)
self.addnorm1 = AddNorm(dropout)
self.ffn = PositionWiseFFN(ffn_num_hiddens, num_hiddens)
self.addnorm2 = AddNorm(dropout)
def forward(self, X, valid_len):
Y = self.addnorm1(X, self.attention(X, X, X, valid_len))
return self.addnorm2(Y, self.ffn(Y))

Из-за остаточных связей этот блок не изменит форму ввода. Это означает, что аргумент num_hiddens должен быть равен размеру ввода последнего измерения. В нашем примере игрушки ниже num_hiddens = 24, ffn_num_hiddens = 48, num_heads = 8 и dropout = 0,5.
X = np.ones((2, 100, 24))
encoder_blk = EncoderBlock(24, 48, 8, 0.5)
encoder_blk.initialize()
encoder_blk(X, valid_len).shape
(2, 100, 24)

Теперь дело доходит до реализации всего энкодера Transformer. С энкодером Transformer n блоков EncoderBlock складываются один за другим. Из-за остаточного соединения размер слоя внедрения d такой же, как размер выходного сигнала блока Transformer. Также обратите внимание, что мы умножаем результат внедрения на √d, чтобы его значения не были слишком маленькими.
#@save
class TransformerEncoder(d2l.Encoder):
def __init__(self, vocab_size, num_hiddens, ffn_num_hiddens,
num_heads, num_layers, dropout, use_bias=False, **kwargs):
super(TransformerEncoder, self).__init__(**kwargs)
self.num_hiddens = num_hidd ens
self.embedding = nn.Embedding(vocab_size, num_hiddens)
self.pos_encoding = PositionalEncoding(num_hiddens, dropout)
self.blks = nn.Sequential()
for _ in range(num_layers):
self.blks.add(
EncoderBlock(num_hiddens, ffn_num_hiddens, num_heads, dropout,
use_bias))
ef forward(self, X, valid_len, *args):
X = self.pos_encoding(self.embedding(X) * math.sqrt(self.num_hiddens))
for blk in self.blks:
X = blk(X, valid_len)
return X

Давайте создадим кодировщик с двумя составными блоками кодировщика Transformer, гиперпараметры которых такие же, как и раньше. Подобно параметрам из предыдущего игрушечного примера, здесь мы добавляем еще два параметра: vocab_size, равное 200, и num_layers, равное 2.
encoder = TransformerEncoder(200, 24, 48, 8, 2, 0.5)
encoder.initialize()
encoder(np.ones((2, 100)), valid_len).shape
(2, 100, 24)

11.3.6. Декодер
Блок декодера трансформера похож на блок кодера трансформатора. Однако, помимо двух подуровней (уровень внимания с несколькими головами и сеть позиционного кодирования), блок преобразователя декодера содержит третий подуровень, который применяет внимание с несколькими заголовками к выходу стека кодера. Подобно блоку кодировщика Transformer, блок декодера Transformer использует «сложение и норму», то есть остаточные соединения и нормализацию уровня для соединения каждого из подуровней.
Чтобы быть конкретным, на временном шаге t предположим, что xt - это текущий ввод, то есть запрос. Как показано на рис. 10.3.5, ключи и значения уровня самовнимания состоят из текущего запроса со всеми прошлыми запросами x1,. . . , xt − 1.
Рис. 11.3.5: Прогноз на временном шаге t для слоя самовнимания.
Во время обучения выходные данные t-запроса могли наблюдать все предыдущие пары ключ-значение. Это приводит к поведению, отличному от предсказанного. Таким образом, во время прогнозирования мы можем исключить ненужную информацию, указав действительную длину t для t-го запроса.
class DecoderBlock(nn.Block):
# `i` means it is the i-th block in the decoder
def __init__(self, num_hiddens, ffn_num_hiddens, num_heads,
dropout, i, **kwargs):
super(DecoderBlock, self).__init__(**kwargs)
self.i = i
self.attention1 = MultiHeadAttention(num_hiddens, num_heads, dropout)
self.addnorm1 = AddNorm(dropout)
self.attention2 = MultiHeadAttention(num_hiddens, num_heads, dropout)
self.addnorm2 = AddNorm(dropout)
self.ffn = PositionWiseFFN(ffn_num_hiddens, num_hiddens)
self.addnorm3 = AddNorm(dropout)
def forward(self, X, state):
enc_outputs, enc_valid_len = state[0], state[1]
# `state[2][i]` contains the past queries for this block
if state[2][self.i] is None:
key_values = X
else:
key_values = np.concatenate((state[2][self.i], X), axis=1)
state[2][self.i] = key_values
if autograd.is_training():
batch_size, seq_len, _ = X.shape
# Shape: (batch_size, seq_len), the values in the j-th column
# are j+1
valid_len = np.tile(np.arange(1, seq_len + 1, ctx=X.ctx),
(batch_size, 1))
else:
valid_len = None
X2 = self.attention1(X, key_values, key_values, valid_len)
Y = self.addnorm1(X, X2)
Y2 = self.attention2(Y, enc_outputs, enc_outputs, enc_valid_len)
Z = self.addnorm2(Y, Y2)
return self.addnorm3(Z, self.ffn(Z)), state

Подобно блоку энкодера Transformer, num_hiddens должен быть равен размеру последнего измерения X.
decoder_blk = DecoderBlock(24, 48, 8, 0.5, 0)
decoder_blk.initialize()
X = np.ones((2, 100, 24))
state = [encoder_blk(X, valid_len), valid_len, [None]]
decoder_blk(X, state)[0].shape
(2, 100, 24)

Конструкция всего декодера Transformer идентична конструкции кодировщика Transformer, за исключением дополнительного плотного слоя для получения оценок достоверности вывода.
Давайте реализуем декодер TransformerDecoder. Помимо обычных гиперпараметров, таких как vocab_size и num_hiddens, декодеру Transformer также необходимы выходы кодировщика Transformer enc_outputs и env_valid_len.
class TransformerDecoder(d2l.Decoder):
def __init__(self, vocab_size, num_hiddens, ffn_num_hiddens,
num_heads, num_layers, dropout, **kwargs):
super(TransformerDecoder, self).__init__(**kwargs)
self.num_hiddens = num_hiddens
self.num_layers = num_layers
self.embedding = nn.Embedding(vocab_size, num_hiddens)
self.pos_encoding = PositionalEncoding(num_hiddens, dropout)
self.blks = nn.Sequential()
for i in range(num_layers):
self.blks.add(
DecoderBlock(num_hiddens, ffn_num_hiddens, num_heads,
dropout, i))
self.dense = nn.Dense(vocab_size, flatten=False)
def init_state(self, enc_outputs, env_valid_len, *args):
return [enc_outputs, env_valid_len, [None]*self.num_layers]
def forward(self, X, state):
X = self.pos_encoding(self.embedding(X) * math.sqrt(self.num_hiddens))
for blk in self.blks:
X, state = blk(X, state)
return self.dense(X), state

11.3.7. Обучение
Наконец, мы можем построить модель кодировщика-декодера с архитектурой Transformer. Подобно модели seq2seq с вниманием в Разделе 11.2, мы используем следующие гиперпараметры: два блока Transformer с размером встраивания и размером выходного блока 32. Кроме того, мы используем 4 головки и устанавливаем скрытый размер равным двум больше, чем размер вывода.
num_hiddens, num_layers, dropout, batch_size, num_steps = 32, 2, 0.0, 64, 10
lr, num_epochs, device = 0.005, 100, d2l.try_gpu ()
ffn_num_hiddens, num_heads = 64, 4
src_vocab, tgt_vocab, train_iter = d2l.l
oad_data_nmt(batch_size, num_steps)
encoder = TransformerEncoder(
len(src_vocab), num_hiddens, ffn_num_hiddens, num_heads, num_layers,
dropout)
decoder = TransformerDecoder(
len(src_vocab), num_hiddens, ffn_num_hiddens, num_heads, num_layers,
dropout)
model = d2l.EncoderDecoder(encoder, decoder)
d2l.train_s2s_ch9(model, train_iter, lr, num_epochs, device)
loss 0.033, 2315.2 tokens/sec on gpu(0)

Как видно из времени обучения и точности, по сравнению с моделью seq2seq с моделью внимания, Transformer работает быстрее за эпоху и быстрее сходится в начале.
Мы можем использовать обученный Transformer для перевода нескольких простых предложений.
for sentence in ['Go .', 'Wow !', "I'm OK .", 'I won !']:
print(sentence + ' => ' + d2l.predict_s2s_ch9(
model, sentence, src_vocab, tgt_vocab, num_steps, device))
Go . => va !
Wow ! => <unk> !
I'm OK . => je vais bien .
I won ! => j'ai gagné !









Резюме
· Модель Transformer основана на архитектуре кодер-декодер.
· Слой внимания с несколькими головами содержит h параллельных слоев внимания.
· Позиционная сеть прямой связи состоит из двух плотных слоев, которые применяются к последнему измерению.
· Нормализация слоев отличается от пакетной нормализации тем, что нормализуется по последнему измерению (размерности объекта) вместо первого измерения (размер пакета).
· Позиционное кодирование - единственное место, которое добавляет позиционную информацию в модель Transformer.

